decrease to $143.4(1)^{\circ}$ for $\mathrm{Fe}-\mathrm{F}(2)-\mathrm{Cu}$ and $127.6(1)^{\circ}$ for $\mathrm{Fe}-\mathrm{F}(3)-\mathrm{Cu}$. It is expected that the magnetic coupling constant $J_{\mathrm{Fe}-\mathrm{F}-\mathrm{Cu}}$ could be weak compared with $J_{\mathrm{Fe}-\mathrm{F}-\mathrm{Fe}}$ and could lead to interesting magnetic properties. A study of these properties is currently in progress.

References

Abrahams, S. C. \& Prince, E. (1962). J. Chem. Phys. 36(1), 50-55.
Brown, I. D. (1981). Structure and Bonding in Crystals, Vol. 2, edited by M. A. O’Keeffe \& A. Navrotsky, pp. 1-29, and references therein. New York: Academic Press.
Clegg, W. (1981). Acta Cryst. A37, 22-28.

Gullot, M., Marchand, A., Leblanc, M. \& Ferey, G. (1987). J. Phys. C, 20, 2405-2414.

Hamilton, W. C. (1959). Acta Cryst. 12, 609-610.
Herdtweck, E. (1983). Z. Anorg. Allg. Chem. 501(6), 131-135.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Leblanc, M., Ferey, G., Calage, Y. \& De Pape, R. (1984). J. Solid State Chem. 53, 360-368.
Moutou, J. M., Francisco, R. H. P., Chaminade, J. P., Pouchard, M. \& Hagenmuller, P. (1986). Z. Anorg. Allg. Chem. 539, 165-174.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1985). SHELX86. In Crystallographic Computing 3, edited by G. M. Sheldrick, C. Kruger \& R. Goddard, pp. I75-189. Oxford Univ. Press.

Acta Cryst. (1990). C46, 15-18

Room-Temperature Structures of $\mathbf{O x o c o p p e r (I I) ~ V a n a d a t e (V) ~ H y d r a t e s , ~}$ $\mathrm{Cu}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)$ and $\mathrm{CuV}_{2} \mathrm{O}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathbf{2}}$

By M. Leblanc and G. Ferey
Laboratoire des fluorures, UA 449, Faculté des Sciences, 72017 Le Mans CEDEX, France

(Received 5 December 1988; accepted 6 April 1989)

Abstract

Cu}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}\left(\mathrm{H}_{2} \mathrm{O}\right), \quad M_{r}=438 \cdot 51\), monoclinic, $P 2_{1} / m, a=7.444$ (1), $b=6.658$ (1), $c=7.759$ (1) \AA, $\beta=93.57(1)^{\circ}, \quad V=383.8(2) \AA^{3}, \quad Z=2, \quad D_{x}=$ $3.20 \mathrm{Mg} \mathrm{m}^{-3}, \quad$ Mo $K \alpha, \quad \lambda=0.71069 \AA, \quad \mu=$ $10.5 \mathrm{~mm}^{-1}, \quad F(000)=414.0, \quad R=0.047$ for 1307 unique reflections. $\quad \mathrm{CuV}_{2} \mathrm{O}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}, \quad M_{r}=297 \cdot 47$, monoclinic, $P 2 / c, a=5.617$ (1),$b=5.595$ (1),$c=$ 11.333 (2) $\AA, \beta=91.04$ (1) ${ }^{\circ}, V=356.1$ (2) $\AA^{3}, Z=2$, $D_{x}=2.77 \mathrm{Mg} \mathrm{m}^{-3}, \quad$ Мо $K \alpha, \quad \lambda=0.71069 \AA, \quad \mu=$ $5.4 \mathrm{~mm}^{-1}, F(000)=286, R=0.045$ for 1355 unique reflections. Crystal hydrothermal growth was from $\mathrm{Cu}_{2} \mathrm{O}$ and $\mathrm{NH}_{4} \mathrm{VO}_{3}$ in a $2.5 \mathrm{M} \mathrm{NH}_{4} \mathrm{HF}_{2}$ solution. In $\mathrm{Cu}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)$, copper atoms adopt either a square planar or a fivefold prismatic coordination. Dimeric entities are formed by edge sharing CuO_{5} and $\mathrm{CuO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)$ polyhedra. These groups are linked by CuO_{4} square planes and by pyrovanadate $\left(\mathrm{V}_{2} \mathrm{O}_{7}\right)^{4-}$ di-tetrahedra. The structure of $\mathrm{CuV}_{2} \mathrm{O}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ consists of infinite chains of $\left[\mathrm{VO}_{3 / 2} \mathrm{O}\right]_{2 n}$ tetrahedra connected by isolated $\mathrm{CuO}_{2 / 2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ square planes. In both structures, the location of the oxygen of water molecules can be predicted by valence bond analysis.

Introduction. As part of a general study concerning the hydrothermal synthesis of minerals and their by-products potentially interesting for their magnetic or electric properties, we focused our attention on several copper vanadates, hydrated $\left[\mathrm{Cu}_{3} \mathrm{~V}_{2} \mathrm{O}_{8} .3 \mathrm{H}_{2} \mathrm{O}\right.$:
voiborthite (Struppler, 1965; Leonardsen \& Petersen, 1974)] or anhydrous $\left[\mathrm{Cu}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}\right.$: macbirneyite (Hughes, Christian, Finger \& Malinconico, 1987)].
Hydrothermal growth of these copper vanadates was performed at low temperature (493 K) in ammonium fluoride solution. A new compound $\mathrm{Cu}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)$ resulted as the major constituent and a small amount of dark green crystals of $\mathrm{CuV}_{2} \mathrm{O}_{6}-$ $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ was also produced. Powder samples of this last compound had already been prepared by crystallization from a solution of copper sulfate and ammonium or sodium vanadate (Fleury, 1966).
The structures of $\mathrm{Cu}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)$ and $\mathrm{CuV}_{2} \mathrm{O}_{6}$ $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ are established by X-ray single-crystal diffraction and presented here.

Experimental. Hydrothermal growth in a Teflon digestion autoclave, from $\mathrm{Cu}_{2} \mathrm{O}$ and $\mathrm{NH}_{4} \mathrm{VO}_{3}$ in $2.5 \mathrm{M} \mathrm{NH}_{4} \mathrm{HF}_{2}$ solution, $493 \mathrm{~K}, 36 \mathrm{~h}$. Data collected on a Siemens AED2 four-circle diffractometer, profile-fitting data analysis (Clegg, 1981). Structures solved from direct methods with Tang option of SHELX76 program (Sheldrick, 1976). F magnitudes used in least-squares refinements. Hydrogen atoms were not located. Atomic scattering factors for O, Cu and V from International Tables for X-ray Crystallography (1974); calculations with SHELX76 program (Sheldrick, 1976) on a MicroVAX II computer.

Table 1. Coordinates and equivalent isotropic temperature factors $\left(\AA^{2}\right)$ in $\mathrm{Cu}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)$ and $\mathrm{CuV}_{2} \mathrm{O}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$, with e.s.d.'s in parentheses

$B_{\text {eq }}=\frac{4}{3} \sum_{i} \sum_{j} \beta_{i j}\left(\mathbf{a}_{i}, \mathbf{a}_{j}\right)$ (Hamilton, 1959).				
	x	y	z	$B_{\text {eq }}$
$\mathrm{Cu}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)$				
$\mathrm{Cu}(1)$	0	0	0	0.75 (3)
$\mathrm{Cu}(2)$	$0 \cdot 1625$ (1)	$0 \cdot 25$	0.7041 (1)	0.76 (3)
$\mathrm{Cu}(3)$	0.3237 (1)	$0 \cdot 25$	0.0703 (1)	0.87 (3)
$\mathrm{V}(1)$	0.6613 (1)	$0 \cdot 25$	0.7841 (1)	0.56 (3)
$\mathrm{V}(2)$	0.7332 (2)	$0 \cdot 25$	0.3335 (1)	$0 \cdot 62$ (3)
$\mathrm{O}(1)$	0.0962 (6)	0.25	-0.0595 (6)	0.7 (2)
O(2)	0.2382 (5)	-0.0370 (6)	$0 \cdot 1297$ (5)	$1 \cdot 1$ (1)
$\mathrm{O}(3)$	0.4465 (7)	0.25	0.8263 (7)	$1 \cdot 2$ (2)
O(4)	0.8613 (5)	0.4542 (6)	$0 \cdot 2960$ (5)	$1 \cdot 2$ (2)
$\mathrm{O}(5)$	0.5396 (7)	$0 \cdot 25$	$0 \cdot 2142$ (8)	1.7 (2)
O(6)	0.6803 (9)	$0 \cdot 25$	-0.4425 (8)	1.8 (3)
$\mathrm{O}(w)$	$0 \cdot 212$ (1)	$0 \cdot 25$	0.4576 (9)	1.9 (3)
$\mathrm{CuV}_{2} \mathrm{O}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$				
Cu	0	0	0	1.82 (3)
V	$0 \cdot 2350$ (1)	0.4519 (1)	$0 \cdot 1620$ (1)	$1 \cdot 13$ (2)
O(1)	0	0.5664 (8)	0.2500 (0)	2.0 (2)
O(2)	$0 \cdot 1830$ (6)	0.1667 (5)	$0 \cdot 1272$ (3)	2.0 (1)
$\mathrm{O}(3)$	0.5	0.4746 (8)	$0 \cdot 25$	$2 \cdot 2$ (2)
$\mathrm{O}(4)$	$0 \cdot 2528$ (6)	0.6146 (6)	0.0456 (3)	$2 \cdot 4$ (2)
$\mathrm{O}(\mathrm{w})$	$0 \cdot 2612$ (7)	0.0615 (7)	-0.1118 (3)	$3 \cdot 1$ (2)

$\mathrm{Cu}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)$: metallic black tabular crystal 0.022 $\times 0.054 \times 0.15 \mathrm{~mm}$. $\omega-2 \theta$ step-scan mode in N steps of $\Delta \omega^{\circ}, 37 \leq N \leq 45,0.025 \leq \Delta \omega \leq 0.068$; time per step: 2 s . Isotropic linewidth $\omega=(1.000+$ $0 \cdot 103 \tan \theta)^{\circ}$. Aperture $D=4.0 \mathrm{~mm}$. Lattice constants based on 30 reflections measured in double step scan mode at $\pm 2 \theta \simeq 30^{\circ}$; absorption correction by the Gauss method, $A_{\max }=0.79, A_{\min }=0.54$. Intensity measurement of one independent set to $2 \theta \leq 70^{\circ}$ within ranges $-12 \leq h \leq 12,0 \leq k \leq 12,0 \leq l \leq 12$. Standard reflections $012, \overline{4} 12,013$, intensity variation $0 \cdot 7 \%, 1811$ reflections measured, 1307 independent reflections used for refinements $[|F|>6 \sigma(|F|)] .80$ parameters refined; mean $\Delta / \sigma=0.0034$, max. $\Delta / \sigma=$ 0.009 ; secondary-extinction factor: $x=2.1(8) \times$ 10^{-7}. A solution with five metallic atoms in $2(a)$ and 2(e) special positions was found with the multisolution tangent direct method of SHELX76. Successive refinements and Fourier maps located the oxygen atoms ($R=0.073$). Further refinements of anisotropic thermal parameters led to $R=0.047, w R=$ 0.050 . Max. and min. heights in final difference F map: $+2 \cdot 8$ and $-2.4 \mathrm{e}^{-3} . \quad w=1 \cdot 32 /\left[\sigma^{2}\left(\left|F_{o}\right|\right)+\right.$ $0.0015 F_{o}^{2}$].
$\mathrm{CuV}_{2} \mathrm{O}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$: dark green prismatic crystal 0.045 $\times 0.080 \times 0.060 \mathrm{~mm}$. $\omega-2 \theta$ step-scan mode in N steps of $\Delta \omega^{\circ}, 37 \leq N \leq 45,0.025 \leq \Delta \omega \leq 0.027$; time per step: 2 s . Isotropic line width $\omega=(0.930+$ $0.044 \tan \theta)^{\circ}$. Aperture $D=4.0 \mathrm{~mm}$. Lattice constants based on 28 reflections measured in double step scan mode at $\pm 2 \theta \simeq 30^{\circ}$; absorption correction by the Gauss method, $A_{\text {max }}=0.82, A_{\text {min }}=0.60$. Intensity measurement to $2 \theta \leq 70^{\circ}$ of two independent sets

Table 2. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ in $\mathrm{Cu}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)$ and $\mathrm{CuV}_{2} \mathrm{O}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$, with e.s.d's in parentheses

$\mathrm{Cu}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)$			
$2 \times \mathrm{Cu}(1)-\mathrm{O}(1)$	$1.881(2)$	$\mathrm{Cu}(2)-\mathrm{O}(1)$	$1.929(5)$
$2 \times \mathrm{Cu}(1)-\mathrm{O}(2)$	$1.999(4)$	$\mathrm{Cu}(2)-\mathrm{O}(3)$	$2.263(6)$
	$\langle d\rangle=1.940$	$2 \times \mathrm{Cu}(2)-\mathrm{O}(4)$	$1.977(6)$
		$\mathrm{Cu}(2)-\mathrm{O}(w)$	$1.970(6)$
$2 \times \mathrm{Cu}(1)-\mathrm{O}(4)$	$2.594(6)$		$\langle d\rangle=2.023$
$\mathrm{Cu}(3)-\mathrm{O}(1)$		$1.916(5)$	
$2 \times \mathrm{Cu}(3)-\mathrm{O}(2)$		$2.075(4)$	
$\mathrm{Cu}(3)-\mathrm{O}(3)$		$2.153(5)$	
$\mathrm{Cu}(3)-\mathrm{O}(5)$		$1.899(6)$	
		$\langle d\rangle=2.024$	
$2 \times \mathrm{V}(1)-\mathrm{O}(2)$	$1.719(6)$	$2 \times \mathrm{V}(2)-\mathrm{O}(4)$	$1.696(4)$
$\mathrm{V}(1)-\mathrm{O}(3)$	$1.652(5)$	$\mathrm{V}(2)-\mathrm{O}(5)$	$1.664(6)$
$\mathrm{V}(1)-\mathrm{O}(6)$	$1.773(6)$	$\mathrm{V}(2)-\mathrm{O}(6)$	$1.806(5)$
	$\langle d\rangle=1.716$		$\langle d\rangle=1.715$
$\mathrm{CuV} \mathrm{O}_{2} \mathrm{O}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$			
$2 \times \mathrm{Cu}-\mathrm{O}(2)$	$1.988(3)$	$\mathrm{V}-\mathrm{O}(1)$	$1.788(2)$
$2 \times \mathrm{Cu}-\mathrm{O}(w)$	$1.986(4)$	$\mathrm{V}-\mathrm{O}(2)$	$1.668(3)$
	$\langle d\rangle=1.987$	$\mathrm{~V}-\mathrm{O}(3)$	$1.781(1)$
	$\mathrm{V}-\mathrm{O}(4)$	$1.607(3)$	
$2 \times \mathrm{Cu}-\mathrm{O}(4)$	$2.628(5)$		$\langle d\rangle=1.711$
$\mathrm{~V}-\mathrm{O}(1)-\mathrm{V}$	$138.0(8)$	$\mathrm{V}-\mathrm{O}(3)-\mathrm{V}$	$171.8(8)$
$\mathrm{Cu}-\mathrm{O}(4)-\mathrm{V}$	$125.8(8)$	$\mathrm{Cu}-\mathrm{O}(2)-\mathrm{V}$	$134.9(8)$

within ranges $-8 \leq h \leq 9,0 \leq|k| \leq 9, \quad 0 \leq l \leq 18$. Standard reflections $124,032, \overline{3} 0 \overline{2}$, intensity variation $1 \cdot 2 \%, 3408$ reflections measured, 1355 independent reflections used for refinements $[|F|>6 \sigma(|F|)], R_{\text {int }}$ $=0.028$. 54 parameters refined; max. $\Delta / \sigma=0.001$; secondary-extinction factor: $x=1.6 \times 10^{-7}$. Multisolution tangent direct method of SHELX 76 gives a solution with two metallic atoms. Successive refinements and Fourier maps allowed differentiation between copper and vanadium atoms and location of oxygen atoms ($R=0 \cdot 102$). The residual decreases to $R=0.045, w R=0.043$ when refining the anisotropic thermal parameters. Max. and min. heights in final difference F map: 1.35 and $-1.70 \mathrm{e}_{\AA^{-3}} . w=3.31 /$ $\left[\sigma^{2}\left(\left|F_{o}\right|\right)+0 \cdot 0.0002 F_{o}^{2}\right]$.

Discussion. The final atomic coordinates and equivalent isotropic temperature factors are listed in Table 1.* Characteristic interatomic distances and selected angles are given in Table 2.
$\mathrm{Cu}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)$: vanadium atoms adopt a tetrahedral coordination while copper atoms are either in a square plane $[\mathrm{Cu}(1)]$ or fivefold coordination $[\mathrm{Cu}(2)$ and $\mathrm{Cu}(3)]$ (Fig. 1). Both $\mathrm{Cu}(2)$ and $\mathrm{Cu}(3)$ polyhedra are very close to square pyramids but their nature is different. A valence bond analysis (Table 3)

[^0]Table 3. Valence bond analysis of $\mathrm{Cu}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)$ and $\mathrm{CuV}_{2} \mathrm{O}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$
The Zachariasen law* is used for $\mathrm{Cu}-\mathrm{O}$ bonds and the Shannon-Calvo law \dagger for $\mathrm{V}-\mathrm{O}$.

$\mathrm{Cu}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)$								
	O(1)	$\mathrm{O}(2)$	O(3)	O(4)	$\mathrm{O}(5)$	$\mathrm{O}(6)$	$\mathrm{O}(w)$	$\sum s$
V (1)		2×1.22	1.50			1.05		4.99
V (2)				$1 \cdot 31$	1.45	0.95		$5 \cdot 02$
$\mathrm{Cu}(1)$	2×0.56	2×0.42		2×0.09				$2 \cdot 14$
$\mathrm{Cu}(2)$	0.50		$0 \cdot 22$	2×0.44			0.45	2.05
$\mathrm{Cu}(3)$	$0 \cdot 51$	$0 \cdot 34$	$0 \cdot 28$		0.55			2.04
$\sum s$	$2 \cdot 13$	1.98	2.00	1.84	2.00	2.00	0.45	
$2-\Sigma s$	$+0.13$	-0.02	$0 \cdot 00$	-0.16	0.00	0.00	+1.55	
$\mathrm{CuV}_{2} \mathrm{O}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$								
	O(1)	$\mathrm{O}(2)$	$\mathrm{O}(3)$	O (4)	$\mathrm{O}(w)$	$\sum s$		
V	1.01	1.43	1.02	1.74		$5 \cdot 20$		
Cu		2×0.43		2×0.09	2×0.43	1.90		
Σs	2.02	1.86	$2 \cdot 04$	1.83	0.43			
$2-\Sigma s$	-0.02	+0.14	-0.04	$+0.17$	1.57			
			$\begin{aligned} *_{s} & =\exp \left[-\left(d_{i}-1.65\right) / 0.40\right] . \\ \dagger s & =1.25\left(1.714 / d_{i}\right)^{s .1} . \end{aligned}$					

Fig. 1. (010) projection of the structure of $\mathrm{Cu}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)$. Hatched polyhedra lie at $y=\frac{3}{4}$.
shows two main features: (i) $\mathrm{O}(4)$ does not partake to a noticeable extent in the coordination of $\mathrm{Cu}(1)$ which is therefore fourfold coordinated, (ii) oxygen atom $\mathrm{O}(w)$ receives only 0.45 valence unit (v.u.) from $\mathrm{Cu}(2)$, whereas the bond strength of all the oxygen atoms is nearly fulfilled. This means that $O(w)$ corresponds to a water molecule. Therefore, $\mathrm{Cu}(2)$ and $\mathrm{Cu}(3)$ form $\mathrm{CuO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)$ and CuO_{5} polyhedra, respectively. Both the $\mathrm{Cu}(2)$ coordination and the connection of $\mathrm{Cu}(2)$ and $\mathrm{Cu}(3)$ polyhedra are rather sparse. $\mathrm{Cu}(2)$ and $\mathrm{Cu}(3)$ pyramids share lateral edges, instead of basal edges as is usually found. The dimeric $\mathrm{Cu}(2)-\mathrm{Cu}(3)$ entities are linked to each other along b by infinite corner sharing trans-chains of $\mathrm{Cu}(1)$ square planes. These chains share two opposite edges with $\mathrm{Cu}(3)$ pyramids. Isolated pyrovanadate

Fig. 2. (010) projection of the structure of $\mathrm{CuV}_{2} \mathrm{O}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ (heights of oxygen atoms along \mathbf{b} are in hundreds).
groups $\left(\mathrm{V}_{2} \mathrm{O}_{7}\right)^{4-}$ at $y=\frac{1}{4}$ and $y=\frac{3}{4}$ ensure the connection of these complex chains via corners. The corresponding framework leaves vacancies where hydrogen atoms of water molecules can reside. It is also clear from the valence bond analysis that hydrogen bonds, if any, can only occur with $\mathrm{O}(4)$.
$\mathrm{CuV}_{2} \mathrm{O}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$: the structure (Fig. 2) can be described as infinite cis-chains of $\left[\mathrm{VO}_{4 / 2}\right]_{2 n}^{2 n+}$ tetrahedra running along a. These chains are connected together by distorted $\left[\mathrm{CuO}_{4 / 2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2-}$ octahedra in order to build up the three-dimensional network. Valence bond analysis (Brown, 1981) of the structure (Table 3) clearly shows that water molecules correspond to $\mathrm{O}(w)$. Indeed, the bond strength s given by

Cu to $\mathrm{O}(w)$ is close to $0.4 \mathrm{v} . \mathrm{u}$. In order to saturate its bond strength to 2.0 v.u., $\mathrm{O}(w)$ must receive 1.6 v.u., i.e. twice the common value (0.8 v.u.) given by H in water molecules. The Jahn-Teller effect on copper leads to four short distances in a square plane $\mathrm{CuO}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$. Two long $\mathrm{Cu}-\mathrm{O}$ distances correspond to less than 16% of the bond strength given by Cu^{2+}. Valence bond calculations also show that hydrogen of water molecules form weak hydrogen bonds with $O(2)$ and $O(4)$. These two latter atoms do not saturate their bond strength, at variance with $O(1)$ and $O(3)$.

From these structural studies, $\mathrm{Cu}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)$ appears to be a basic copper pyrovanadate monohydrate, whereas $\mathrm{CuV}_{2} \mathrm{O}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ is a copper metavanadate dihydrate. It is to be noted that the structure of $\mathrm{Cu}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)$ differs from that of the isoformula phosphate $\mathrm{Cu}_{3} \mathrm{P}_{2} \mathrm{O}_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)$ (Riou, Gerault \& Cudennec, 1985). Now, it will be interesting to study the thermal dehydration of these copper vanadates and
to analyse the structure of the corresponding anhydrous compounds.

References

Brown, I. D. (1981). Structure and Bonding in Crystals, Vol. 2, edited by M. A. O'Keeffe \& A. Navrotsky, pp. 1-29, and references therein. London: Academic Press.
Clegg, W. (1981). Acta Cryst. A37, 22-28.
Fleury, P. (1966). C. R. Acad. Sci. Sér. C, 263, 1375-1377.
Hamalton, W. C. (1959). Acta Cryst. 12, 609-610.
Hughes, J. M., Christian, b. S., Finger, L. W. \& Malinconico, L. L. (1987). J. Volc. Geother. Res. 33, 183-190.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Leonardsen, E. S. \& Petersen, O. V. (1974). Am. Mineral. 59, 372-373.
Riou, A., Gerault, Y. \& Cudennec, Y. (1985). Rev. Chim. Minér. 22, 776-783.
Shannon, R. D. \& Calvo, C. (1973). Acta Cryst. B29, 1338-1345.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Struppler (1965). Ann. Chim. (Paris), 10, 345.

Acta Cryst. (1990). C46, 18-21

Structures of Two Disulfide-Bridged Compounds

By N. W. Alcock* and M. Pennington
Department of Chemistry, University of Warwick, Coventry CV4 7AL, England

(Received 7 November 1988; accepted 8 March 1989)

Abstract

Bis(tetraphenylarsonium) cis,cis-1,2,5,6-tetracyano-3,4-dithiahexa-1,5-diene-1,6-dithiolate, $\left[\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\right]_{2} \mathrm{C}_{8} \mathrm{~N}_{4} \mathrm{~S}_{4}, \cdot(1) ; M_{r}=1047 \cdot 0$, monoclinic, $P 2 / n, a=13.692$ (3),$b=9.647$ (3),$c=19.872$ (5) \AA, $\beta=102.71(2)^{\circ}, \quad U=2560.5(1.0) \AA^{3}, \quad Z=2, \quad D_{x}=$ $1.36 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \mu(\mathrm{Mo} K \alpha)=14.98 \mathrm{~cm}^{-1}, \quad F(000)=$ 1068, $R=0.046$ for 2514 observed reflections. 4,4',6,6'-Tetramethyl-2,2'-thiopyrimidine, $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{~S}_{2}$, (2); $M_{r}=278 \cdot 4$, monoclinic, $P 2_{1} / c, a=13.273$ (3), b $=9.075$ (4) , $c=12.281$ (4) $\AA, \quad \beta=107.66(2)^{\circ}, \quad U=$ 1409.7 (7) $\AA^{3}, \quad Z=4, D_{x}=1.31 \mathrm{~g} \mathrm{~cm}^{-3}, \mu($ Mo $K \alpha)$ $=3.49 \mathrm{~cm}^{-1}, \quad F(000)=584, \quad R=0.054$ for 1554 observed reflections. Both compounds were produced by oxidation of thiols by uranyl salts. Dimensions are normal, with C-S 1.759 (6) and 1.782 (4), $S-S \quad 2.051$ (3) and 2.021 (2) \AA respectively, and torsion angles $C-S-S-C$ of 82.7 (4) and $95.7(4)^{\circ}$.

Introduction. During our studies of compounds containing U-S bonds (Alcock \& Pennington, 1989), we investigated the reactions of thiolate anions with uranyl salts. We were unsuccessful in isolating the

[^1]0108-2701/90/010018-04\$03.00
intended complexes (even though one had previously been reported), because of the production of compounds containing $\mathrm{S}-\mathrm{S}$ bonds formed by the oxidation of the ligand. The structures of two such compounds are described here.

Experimental. Preparation. (1) was isolated during an attempt to prepare the 1,2-dicyanoethylene-1,2dithiol salt of uranium(VI). The thiol ligand was prepared using the method described by Davison \& Holm (1967). 0.50 g of this ligand in methanol was then added to a solution of uranyl acetate $(0.58 \mathrm{~g})$ producing an olive-green-coloured solution. When addition was complete, the mixture was heated at reflux for 2 h . When cool, the volume of solvent was reduced until the first sign of precipitation. The solution was then filtered and tetraphenylarsonium chloride $(1.0 \mathrm{~g})$ in methanol added. After further cooling, yellow needle-like crystals had formed, which were shown by structure determination to be the cis,cis-disulfide.

Dimethylthiopyrimidine dimer (2), was formed in an attempt to prepare the dimethylthiopyrimidine product of uranyl nitrate described by Baghlaf, (c) 1990 International Union of Crystallography

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52135 (19 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: * Author to whom correspondence should be addressed.

